On a Semi-Rigidity Property for Holomorphic Maps
نویسنده
چکیده
§
منابع مشابه
Rigidity and Holomorphic Segre Transversality for Holomorphic Segre Maps
Let Hn and HN denote the complexifications of Heisenberg hypersurfaces in Cn and CN , respectively. We show that non-degenerate holomorphic Segre mappings from Hn into HN with N ≤ 2n− 2 possess a partial rigidity property. As an application, we prove that the holomorphic Segre non-transversality for a holomorphic Segre map from Hn into HN with N ≤ 2n− 2 propagates along Segre varieties. We also...
متن کاملRigidity in Holomorphic and Quasiregular Dynamics
We consider rigidity phenomena for holomorphic functions and then more generally for uniformly quasiregular maps.
متن کاملHolomorphic maps from the complex unit ball to Type IV classical domains
The first part of this paper is devoted to establish new rigidity results for proper holomorphic maps from the complex unit ball to higher rank bounded symmetric domains. The rigidity properties have been extensively studied in the past decades for proper holomorphic maps F : Ω1 → Ω2, between bounded symmetric domains Ω1,Ω2. The pioneer works are due to Poincaré [P] and later to Alexander [Al] ...
متن کاملErgodicity, bounded holomorphic functions and geometric structures in rigidity results on bounded symmetric domains
Over the years the author has been interested in rigidity problems on bounded symmetric domains of rank ≥ 2. In this article we give an overview on rigidity problems arising from holomorphic mappings either on bounded symmetric domains of rank ≥ 2 or on their finite-volume quotient manifolds into complex manifolds, placing the focus on recent developments. The article highlights the use of some...
متن کاملA Liouville Property of Holomorphic Maps
We prove a Liouville property of holomorphic maps from a complete Kähler manifold with nonnegative holomorphic bisectional curvature to a complete simply connected Kähler manifold with a certain assumption on the sectional curvature.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003